Partition function and Heisenberg group
 Yves Benoist

Abstract

The partition function is a classical function that has been introduced in the mid 1800s. This function can be seen as a potential on the Heisenberg group. This new point of view is very helpful to understand the positive harmonic functions on this group.

The partition function $p(x, y, z)$ is defined, for integers x, y, z, as the number of ways to write z as a sum of integers

$$
z=n_{1}+\cdots+n_{y} \quad \text { with } \quad x \geq n_{1} \geq \cdots \geq n_{y} \geq 0
$$

Such a decomposition is called a "partition" of z. By convention, one sets $p(x, y, z)=0$ when x, y or z is negative. This partition function is non-zero for $x \geq 0, y \geq 0, x y \geq z \geq 0$, and satisfies the equalities

$$
p(x, y, z)=p(y, x, z)=p(x, y, x y-z)
$$

The proof of these equalities is a nice exercise. This function has been studied for almost two hundred years. For instance, Cayley and Sylvester proved in the 1850s that the sequence
$z \mapsto p(x, y, z)$ is increasing for $z \leq x y / 2$ and decreasing for $z \geq x y / 2$.
This fact looks very elementary, but two hundred years later, it still does not have a purely combinatorial proof.

The partition function also satisfies the functional equation,

$$
\begin{equation*}
p(x, y, z)=p(x-1, y, z-y)+p(x, y-1, z) \tag{0.1}
\end{equation*}
$$

for all $(x, y, z) \neq 0$. One checks it by splitting the set of partitions according to the colour of the lower-left case of the rectangle as in Figure 1.

The Heisenberg group $G=H_{3}(\mathbb{Z})$ is the set of triples of integers $g=(x, y, z)$ endowed with the product

$$
\left(x_{0}, y_{0}, z_{0}\right)(x, y, z)=\left(x_{0}+x, y_{0}+y, z_{0}+z+x_{0} y\right) .
$$

Figure 1: The equality $p(5,4,12)=p(4,4,8)+p(5,3,12)$, that is $11=8+3$.

Let $S \subset G$ be a weighted finite set. This means that each element s of S has a mass $\mu_{s}>0$. For a function $h(x, y, z)$ on G we define its "weighted sum of left translates"

$$
\operatorname{Ph}(g)=\sum_{s \in S} \mu_{s} h\left(s^{-1} g\right) .
$$

Choosing $S=\{a, b\}$ with $a=(1,0,0)$ and $b=(0,1,0)$ having weight 1 . The functional equation (0.1) says that, outside point 0 , the function $h=p$ satisfies $h=P h$.

The potential at 0 of this Markov operator P is nothing but this partition function p. That is, one has the equality,

$$
p=\sum_{n=0}^{\infty} P^{n} \mathbf{1}_{\{0\}},
$$

where $\mathbf{1}_{\{0\}}$ is the characteristic function at 0 . Indeed, as can be seen in Figure 2 , for g in $G, p(g)$ is the number of ways to write g as a word in a and b.

Figure 2: The partition $12=5+4+2+1$ associated to the word ababaabab gives the element $g=a b a b a a b a b=(5,4,12)$ in G.

The P-harmonic functions on G are the functions h on G that satisfy $h=P h$, that is, for our example $S=\{a, b\}$,

$$
\begin{equation*}
h(x, y, z)=h(x-1, y, z-y)+h(x, y-1, z) . \tag{0.2}
\end{equation*}
$$

We want to describe the positive P-harmonic functions ${ }^{1}$ on G, that is, the positive solutions of this infinite family of linear equations (0.2). By a very general theorem of Choquet, it is enough to describe the extremal positive P-harmonic functions on G that is those that cannot be written as the sum of two non-proportional positive P-harmonic functions.

When h does not depend on z, one can choose h to be a character,

$$
h(x, y, z)=r^{x} s^{y} \quad \text { with } r, s>0 \text { and } 1 / r+1 / s=1 .
$$

When h does not depend on x one can choose h to be the partition function in a very wide rectangle,

Figure 3: The function p_{∞} satisfies $p_{\infty}(y, z)=p_{\infty}(y, z-y)+p_{\infty}(y-1, z)$. The red diagonal is the partition function studied by Hardy and Ramanujan.

The following theorem describes all the P-harmonic functions and it can be extended to any weighted finite subset S of the Heisenberg group G.

Theorem. An extremal positive P-harmonic function on G is either a character $h(x, y, z)=r^{x} s^{y}$,
or a partition function $h(x, y, z):=p_{\infty}(y, z)$, or a switch of the partition function $h(x, y, z):=p_{\infty}(x, x y-z)$, or a right translate of a multiple of one of these functions.

[^0]
[^0]: ${ }^{1}$ The positive P-harmonic functions where described by Choquet and Deny on abelian groups in the 1950s, by Margulis on nilpotent groups when S spans G as a semigroup in the 1960s, and by Ancona on hyperbolic groups in the 1980s.

